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Mesh Distance Formulae

Michael J. Pertel
March 27, 1992

Abstract

A table of useful summation formulae are derived, together with a
Mathematica package for producing them. The distance distribution
in mesh routing networks is derived. The mean and variance of the
distance distribution are computed. A program for computing the
distance distribution of any mesh is presented.

1 Introduction

The author’s study of mesh distance-distributions was prompted by
his study of routing network simulator convergence. The variance of
the path-length distribution in a mesh routing network effects the con-
vergence of simulators [1] used for studying routing networks [2]. For
a fine-grained multicomputer [3], such as the Mosaic [4], the number of
distinct (sre, dst) pairs is too large ! to simulate every path. Various
network parameters converge to their true, asymptotic values as the
average distance of the sampled paths converges to the mean distance.

The first section derives summation formulae used in subsequent
calculations. A recursive technique for calculating a family of formulae
is derived, and it is used to deduce the needed equations. A Mathe-
matica [5] package that can be used to compute any formula in the
family is also derived.

The second section develops a recursive technique for computing
the distance distribution of any mesh. The distributions of one- and
two-dimensional meshes are derived explicitly.

LA 128 x 128 mesh has 268435456 (src, dst) pairs.



The third section computes the mean and variance of the distance
distribution. Calculating the variance was the original motivation for
studying the distribution, but it was discovered that the moments of
the distribution could be computed without knowing the distribution.

The last section presents a simple program that directly computes
the distance distribution of any mesh. This program can be used to
check the analytical results and to measure properties for which no
equations are presented.

2 Summation Formulae

This section derives summation formulae used in calculations. A
shorthand notation is defined to simplify the exposition. Lemmas
present simple facts used in the proofs. A theorem is proven that pro-
vides a recursive technique for computing the desired formulae. The
summation formulae are derived as corollaries.

Definition 1 For integer h > 1> 0 and n > 0, let Stn = E?:l i,

Lemma 1 S}, =85, —Sg,  forl > 1.

X n _ h  m _ -1 :n h n _ Qn n
proof: Sg, =3 Lot =2 iso "+ 2im " =S5 + ST

Lemma 2 S&h =h+1
proof: Induction on A. 8870 =1. 887}& = Sg,h—l +1for h > 1.
Corollary 1 S?h =h-1[14+1

proof: S&h =h+1and S?h = S&h — 8871_1 =h+1-1{forl>1.

Lemma 3 Sg, = S7, if and only if n > 0.

proof: 0" = 0 if and only if » > 0.
Theorem 1 S7, = Y, Syt forn > 1.
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proof:

Induction on A. Base case:

e Sgg=0forn>1
o 30, (anything) =0

Induction step:

n
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proof:
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2 h 2
_ h(h (h+1)+h(h+1))_z<l(1—1) +z(z_1))
=1

3 6 3 6
R¥(h+1) REA+1) 1 1 1
= (3 i (6 )_gsg,h‘l'isg,h GS(I”L
3 h3(h—|—1)_|_h2(h—|—1)
! 3 3
_ hA(h+ 1)
B 4

2.1 General Sum Formulae in Mathematica

The recursive technique is simple but tedious; this suggests automa-
tion. The technique will be adapted for use with Mathematica [5].
The required Mathematica input will be listed, and a table of sample
results will be given.

The Mathematica package will use a refinement of our sum nota-
tion. To adapt our technique to dynamic programming, a notation is
introduced for the coefficients of the powers of h in a series expansion
of 57 ;.-

Definition 2 QOur Mathematica sum notation is: s[n,l,h]= Sﬁh
The notation for the case when | = 0 is: s[n,x]=s[n,0,x]. When
the upper limit s implicitly the variable h, there is only one parameter:
s[n]=s[n,h].

Definition 3 The notation for the coefficient of b* in s[n] is c[n,i].
That is, c[n,i]l=Coefficient[s[n],%"], and s[n]= 372, c[n, k] A*.

Lemma 5 Forn >0, sln]l=(h+ 1)sln— 1] - > 72,c[n — 1,k] s[k].

proof:
h—1 h oo
s[n]:hsggl—Zngl—(thl Sghl— ch—lk
=0 (=0 k=0



Lemma 6 The series expansion of s[n] s finite: c[n, k] =0 fork >
n+ 1, so slnl= Y14} c[n, k] h*. In particular: s[n] = n+1 + O(R™).

proof: Induction on n. Base case: s[0] = h + 1. Induction step:
given that for all m < n we have clm— 1,m] = L and c[m — 1,k] = 0 for

k > m, we show that c[n,n+ 1] = ﬁ and c[n k] =0for k >n+1.
sln] = (A4 1)s[n—1] —Zc[n—l,k]s[k]
k=0
n—1
(14 ¢[n—1,n])s[n] = (h+1)s[n—1]—Zc[n—l,k]s[k]
k=0
n—1 B+l
1 R _ ﬂ n—1.} _ on — h k
(J+;)>[H] - (h+1)( + o ) > 1,k1<k+1 +0(h >)
k=0

n n+1
(+1)s[n] = hn + 0o(r™)

n

The recurrence relation needed to compute any s[n] by dynamic
programming follows immediately from the lemmas.

Theorem 2 Forn > 0,

n

S[n]:'n—}-l((h—l_l [n— 1] Z_: n—1,k]s[k])

The listing below illustrates the use of the theorem with Mathe-
matica, and the table gives some sample results.

cln_,j_1:= cln,jl= Coefficient[Collect[s[n],h],h"j]

s[0]= h+1

s[n_]:= s[n]l= Expand[(n/(n+1)) ((h+1)s[n-1]-Sum[c[n-1,k] s[k],{k,0,n-13}1)]
TeXForm[Table[s[i],{i,0,10}]1]

Son = 1+h (1)
Shi = ot )
Sor = %+%+%3 (3)
S = %2+%3+%4 (4)
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h h® RB> RS AT

g6 - = _ - 4 4"

Oh 2 etz T2t T 0
h* Th*  Th® BT AP

g7, - L _ = " 2 2

0.k 2 Tttty (8)

—h 2R3 TR 2RT B8 P
s - 4 = oz 4 LD
0,k 30 T 9 5 T3 Tty (9)

-3h* A* Th®  3R®  K? 1O

s?. = S S I 10
0.k 20 s 1wttt (10)
5h B3 5R9 R0 pll
slo _— 0 aps_ Ty T T 11
0.k 66 2 t Tttt (11)

3 Distance Distribution

For a mesh of radix R and dimension d, N%(I) denotes the number of
(src,dst) pairs separated by distance [.

Definition 4

N%w = H <<a1, ag) (b1, ..,bd))

Lemma 7 N%(0) = r?

d
Ogai<R,0§bi<R,§ la; — b =1

=1

proof: N%(0) = [{(a1,..,aq) | 0 < a; < R}|

Lemma 8 N%(I) =0 forl>d(R-1)

proof: |a;—b| < R-1

Lemma 9
R =0
NiR()={2(R-1) 1<I<R-1
0 {>R



proof: For 1<I<R-1:
Nh() = 2 [{(a,0)|0<a<b< R b—a=1}
= 2|{(071)7(1vl+1)77(R_l_17R_1)}|

Theorem 3 N%(1) = Yol NE(i) NG (71— 4)

proof:
{ <(a1, o ad), (b1, bd))
1
U { <(a1, yag), (b, ., bd))
{ <(a1, ag), (b, bd))
<(a1’~~’ad_1)’(b1,~,bd_1))
l
= Z ( ‘{ (ay,..,ag_1), (b1, bd_l))
0

N

d
Ogai<R,0§bi<R,E la; — bl =1
i=1

0<a; <R,0<b; <R, |ag—byg|=1, E |a —bl—l—l}‘
0<a; <R,0<b; <R,|Jag—by|l=r1, E |a —bl—l—l}‘

d—1

aj—bjl=l—i} {(adbd) Iad—bdl—t}‘
J=1
d—1
Z|a]—b]|=z—i}‘~ {(ad’m |ad—bd|=z}‘)
=1

Corollary 5 for0< I < R

-1
N§{(1) = 2(R - DR + RNG D) + > 2(R — 1+ 1) NG (i)
=1
proof:
N&(I) = RNEY +22 — ) NL1 - 4)

— Ndl _I_ZQ —l-l—]Ndl()

-1
= RN'()+2R-DR" + > 2R—1+ j)NF'())

i=1



Corollary 6 Forl > R,

N§(1) = RNGH(D) + Z R—14 i) Ng (i)
i=[—R+1

proof: N%(I)= RNL M) + SR 2R - ) NG (1 —4)

Corollary 7

R2 . =0

N}(D) = 4R21(1_%+61ﬁ2_ﬁ1) s
13_6R3( _1_%_8’?_#4-8’?) R<I<2(R-1)
0 I>92R—1

proof: For 0 <! < R,

N%(l) = 2(R-1)-R+R-2(R —l+22 —1+14)-2(R—1)
= UMR—U+M4LL1—H—442L1—H

For R<I<2(R-1),

R-1
N&() = Y. 20R—1+414)-2(R—1)
t=l—R+1
= 4AR(R—1)(2R—1—1)+4ls[1,1 —R+ 1,R— 1]
—4s[2,1-R+1,R—1]

4 Moments of the Distribution

In this section, the mean distance and mean-square distance are com-
puted to allow calculation of the variance. Three theorems are proven.
The first theorem states that the average distance in a d-dimensional
mesh is d times the average distance in a one-dimensional mesh. The
second theorem states that in a d-dimensional mesh the variance of the
distance is d times the variance of the distance in a one-dimensional
mesh. The third theorem states that the standard (RMS) deviation
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of the distance divided by the average distance for a d-dimensional
mesh is \/LE times the value for a one-dimensional mesh. Moments of

one-dimensional meshes are computed as lemmas to provide explicit
formulae for arbitrary meshes.

Definition 5 <D”>§lg = ﬁ E;li]g_l) I" - NK(1)

Lemma 10 <D0>;l% =1

proof:

d(R-1)
> N&() = {((a1, -, aq), (br, - b)) | 0 < a; < R, 0 < b; < R}| = R*
=0

proof: LS 9R-1) = & (2RSY 5 —282 1)

1 R—-1 R—-1 R-1 R—-1
(D™ = — oS (= ba| o Jaa — ba))”

proof:

Y la-b[" = Z‘{(a,b) ‘ la—b| = z}\ A
a,b l
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Lemma 13 <D2>}% =1(R?*-1)
R2(R?—
proof: Y100 Yo (a - b)? =2RS§p_ 1 —2Sjp_1 = (6 Y
Lemma 14 <D2>;l% = d(zldgl)RQ - d(4fg1) + d9R2 , ford > 1.
proof:
d 1 R-1 R-1 d
2
<D>R = ﬁ (Z|a2—b|)
a1=0 bg=0
1 R-1 R-1 d
= pu : Zlaz—bIZI%
a1=0 by=01t=1
1 R-1 R-1 d d
= g : > lai = billa; — bl + D fai — bl
a1=0 bq=0 \t=1 j#: i=1
d 1 R-1 R-1 R-1 R-1
= Z D2 |ai bll RQZ Z|a]—b|
=1 j#1 a;=0b;=0 a;=0b;=0

Theorem 5 (D?)j,— ((D')3) = d- (<D2>; - (<Dl>;)2), ford > 1
proof:

(d(d —1) (<D1>R)2 +d <D2>}%) —(d <D1>}3)2 = d(D*)p—d (<D1>E)2
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VIO-08), 4 B+
Theorem 6 D% = Vi Ia-L
proof:
2. d 2
Jo-mm)hs Jwonk- (o)
(D)k (D)g
|02k (k)
- Vd (D)r
2 d
<(D_<D>%) >R 1 3 1
Corollary 9 o = 77 + NONCTE + O(ﬁ)

5 Program for Distribution

This section presents a simple program that computes the mesh dis-
tance distribution directly for a specified radix and dimension. The
program does not use any of the analysis, so it provides independent
confirmation of results. Since it computes the distribution directly
(brute force), the program is very short, simple, and obviously cor-
rect. The program could be made more efficient, but it is fast enough
for practical purposes.

The program can compute the distance distribution for any mesh,
and the distribution can be used to compute any desired statistic. The
closed-form expression for the mesh distance distribution is tedious to
derive and use for dimensions greater than 2, so it is preferable to
use the program for high-dimensional meshes. An example of the pro-
gram’s utility is that it not only computes the mean and standard
deviation (for which simple formulae were derived in the previous sec-
tion), but it also computes the probability that a distance lies within
one standard deviation of the mean (a useful figure for which no for-
mula is given). The program listing appears in Figure 1, and Table 1
gives sample results.
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/* ddist.c

* Invoking 'ddist R 4" computes the distance distribution
* for a radix-R d-dimensional mesh.

#include <stdio.h>

#include <math.h>

#include <malloc.h>

main(argc,argv) char **argv; int argc;

{

int R=atoi(argv[1]), d=atoi(argv[2]);
int N=(int)pow((double)R, (double)d);
int i, j,stride,dim,dist,1l,m; double m0=0.,m1=0.,m2=0.,sd;
double *c=(double*)malloc((unsigned) ((d*(R-1)+1)*sizeof (double)));
printf("R=%d, d=%d, N=%d\n",R,d,N);
for(i=0; i<=d*(R-1); i++) c[i]=0.;
for(i=0; i<N; i++) for(j=0; j<N; j++) {
for(dist=dim=0, stride=1; dim<d; dim++, stride*=R)
dist+=abs((i/stride)%R - (j/stride)%R);
c[dist]l++; }
for(i=0; i<=d*(R-1); i++)
printf("count [#d]=¥%g\n",i,c[i]),
mO+=c[i] ,m1+=i*c[i] ,m2+=i*i*c[i];
printf("#paths = %g (N"2=%d)\n",m0,N*N);
printf("avg(D) = %g (d*(R-1/R)/3=%g)\n",m1/=m0,d*(R-1./R)/3.);
printf("avg(D"2)=%g \n",m2/=m0);
printf("std dev= %g\n",sd=sqrt(m2-mi*mi));
printf("std dev/avg(D)=%g\n",sd/ml1);
printf("range (%d,%d) ",1=(int)(mil-sd),m=(int)(mi+sd+.5));
for(i=1l, j=0; i<=m; i++) j+=c[il];
printf("confidence %g\n", ((double)j)/m0);

Figure 1: Simple Program for Computing Distance Distribution
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mesh avg dist | std dev | std dev/avg | range | confidence
4x1 1.25 968 175 0-2 88%
8§ x1 2.63 1.90 7124 0-5 91%
16 x 1 5.31 3.78 711 1-9 7%
4 x4 2.50 1.37 548 1-4 86%
32x1 10.7 7.55 708 3-18 67%
64 x 1 21.3 15.1 707 6-36 65%
8 x 8 5.25 2.69 512 2-8 81%
4x4x4 3.75 1.68 447 2-5 76%
128 x 1 42.7 30.2 707 12-73 65%
16 x 16 10.6 5.34 503 5-16 72%
8§ x 8 x8 7.88 3.29 417 4-11 7%
32 x 32 21.3 10.7 501 10-32 70%
64 x 64 42.7 21.3 500 21-64 68%
16 x 16 x 16 15.9 6.54 411 9-22 70%
128 x 128 85.3 42.7 500 42-128 67%
32 x 32 x 32 32.0 13.1 409 18-45 70%

Table 1: Sample Results from Program

Execution time is O(dN?) = O(dR?*). On a Sun SPARCstation
using cc without optimization, the 32 x 32 x 32 calculation takes
roughly 21hours, the 128 x 128 calculation takes roughly 3.5hours,
and the smaller meshes take less than 20 minutes.
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